Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Language
Document Type
Year range
1.
Journal of the Iranian Chemical Society ; 19(3):839-846, 2022.
Article in English | ProQuest Central | ID: covidwho-1694223

ABSTRACT

Ferrocene and its derivatives are vital class of organometallic compounds having extensive biological activities. Six novel ferrocene-based thiosemicarbazones have been synthesized through the condensation reaction of acetyl ferrocene with differently substituted thiosemicarbazide. Furthermore, we used state-of-the-art computational docking approach to explore the theoretical aspects for possible antiviral potential of our synthesized compounds. All the six compounds were docked with Mpro protein of SARS-CoV-2, which is very crucial protein for viral replication. Among the six derivatives, compounds 2 and 4 showed higher binding affinities with binding energy of − 6.7 and − 6.9 kcal/mol, respectively. The visualization of intermolecular interactions between synthesized derivatives and Mpro protein illustrated that each of compounds 2 and 4 forms two hydrogen bonds accompanied by important hydrophobic interactions. The comparison of binding affinities with some recently approved drugs like remdesivir, chloroquine and hydroxychloroquine molecules are also made. The calculated binding energies of remdesivir, chloroquine and hydroxychloroquine molecules with Mpro of COVID-19 was found to be − 7.00, − 5.20 and − 5.60 kcal/mol, respectively. The binding energy of compound 4 (− 6.9 kcal/mol) was almost equal to the remdesivir and greater than the binding energies of chloroquine and hydroxychloroquine. It is expected from the current investigation that our synthesized ferrocene-based thiosemicarbazones might have potential for drug against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL